Elliptic K3 Surfaces with Abelian and Dihedral Groups of Symplectic Automorphisms
نویسنده
چکیده
We analyze K3 surfaces admitting an elliptic fibration E and a finite group G of symplectic automorphisms preserving this elliptic fibration. We construct the quotient elliptic fibration E/G comparing its properties to the ones of E. We show that if E admits an n-torsion section, its quotient by the group of automorphisms induced by this section admits again an n-torsion section. Considering automorphisms coming from the base of the fibration, we can describe the Mordell–Weil lattice of a fibration described by Kloosterman. We give the isometries between lattices described by the author and Sarti and lattices described by Shioda and by Griees and Lam. Moreover we show that for certain groups H of G, H subgroups of G, a K3 surface which admits H as group of symplectic automorphisms actually admits G as group of symplectic automorphisms.
منابع مشابه
Elliptic Fibrations and Symplectic Automorphisms on K3 Surfaces
Nikulin has classified all finite abelian groups acting symplectically on a K3 surface and he has shown that the induced action on the K3 lattice U⊕E8(−1) depends only on the group but not on the K3 surface. For all the groups in the list of Nikulin we compute the invariant sublattice and its orthogonal complement by using some special elliptic K3 surfaces.
متن کاملSymplectic Automorphisms and the Picard Group of a K3 Surface
Let X be a K3 surface, and let G be a finite group acting on X by automorphisms. The action of G on X induces an action on the cohomology of X . We assume G acts symplectically: that is, G acts as the identity on H(X). In this case, the minimum resolution Y of the quotient X/G is itself a K3 surface. Nikulin classified the finite abelian groups which act symplectically on K3 surfaces by analyzi...
متن کاملSymplectic Automorphisms on Kummer Surfaces
Nikulin proved that the isometries induced on the second cohomology group of a K3 surface X by a finite abelian group G of symplectic automorphisms are essentially unique. Moreover he computed the discriminant of the sublattice of H(X,Z) which is fixed by the isometries induced by G. However for certain groups these discriminants are not the same of those found for explicit examples. Here we de...
متن کاملThe Dihedral Group D5 as Group of Symplectic Automorphisms on K3 Surfaces
We prove that if a K3 surface X admits Z/5Z as group of symplectic automorphisms, then it actually admits D5 as group of symplectic automorphisms. The orthogonal complement to the D5-invariants in the second cohomology group of X is a rank 16 lattice, L. It is known that L does not depend on X: we prove that it is isometric to a lattice recently described by R. L. Griess Jr. and C. H. Lam. We a...
متن کاملSymplectic Automorphisms of Prime Order on K3 Surfaces
We study algebraic K3 surfaces (defined over the complex number field) with a symplectic automorphism of prime order. In particular we consider the action of the automorphism on the second cohomology with integer coefficients (by a result of Nikulin this action is independent on the choice of the K3 surface). With the help of elliptic fibrations we determine the invariant sublattice and its per...
متن کامل